Всероссийская научная конференция с международным участием

«Проблемы сохранения биоразнообразия в северных регионах»

Апатиты – Кировск
1-3 октября 2010
с занятием новых биотопов и экологических ниш. Такое явление можно рассматривать как биологическое загрязнение среды северного региона.

В целом, несмотря на высокое разнообразие и динамичность видового состава адаптивного компонента, синергетизация флоры региона проявляется на фоне сохранения значительной роли и участия аборигенов видов-анофонов.

О НОВОМ МЕСТОНАХОЖДЕНИИ HAMMARBYA PALUDOSA (L.) O. KUNTZE (ORCHIDACEAE) СРЕДИ ИЗВЕСТНЫХ В МУРМANSКОЙ ОБЛАСТИ

Блинова И.В.
Учредитель Российской академии наук, Ползун-альпийской ботанический сад-институт им. Н.А. Аврамова Кольского научного центра РАН, Кировск, Россия
E-mail: ibbl@yandex.com

Hammarbya paludosa (L.) O. Kuntze включена в Красную книгу Мурманской области и подлежит полной охране на территории региона (Блинов, 2003). Особи этого вида – мелкие, зеленоватые, включая цветки, могут легко просматриваться при полевых работах.


Ниже мы приводим список местонахождений H. paludosa в Мурманской области по широтному градиенту. В скобках указано размещение образцов в гербариях.

1) к югу от Чун-озера, близко к границе Лапландского заповедника (Неженская, 1960), на трохировом болоте. Впоследствии эта точка в ряде источников (Раменская, 1983; Андреев, Макарова, 1990) именовалась как “Лапландский заповедник”;
2) окрестности г. Апатиты, мохово-осокоово болото в разреженном сосновом поясе, 04.07.2001, И. В. Блинова, А. А. Пыхляк, В. Н. Андреева (KPABG, Lb);
3) правый берег р. Умба, 5 км от Занеека на Умбозере, кочковато-моховое болото, на санговейной кочке, поросшей осокой, ериком и др., 27.07.1957, Е. Г. Чернов, Б. Н. Головкин (KPABG). В литературе эта точка известна как “Занееко” (Раменская, 1983), что не очень удало и, поскольку в Мурманской области есть другие, и т. ч. и более крупные географические пункты с синонимичным названием. Есть ошибочные ссылки на это место (Александров и др., 2004);
4) о. Олений (Белое море), осокоово-пушчовое болото у Большого озера (Воробьева, 1996; св. часть оз. Б. Верхнего, 08.08.1986, И. Г. Хренова, опр. 21.09.2008, М. Н. Кожин (KAND);
5) к северу от оз. Канозеро (Александров и др., 2004);
6) 7 местонахождений от Кандалакши до Турьего мыса (Александров и др., 2004);
7) о. Рождественский от Кандалакши до Турьего мыса (Александров и др., 2004);
8) северная часть устья Оленьи, мохово-осокоово-пушчовое болото, 06.08.2010, И. В. Блинова, Л. А. Москвина (KAND);
9) ЮВ от о. Ковда, мелиорированное болото с сосной, мочажина, 30.07.1954, Р. Н. Шляков (KPABG); окрестности о. Ковда, сфагновое болото, 25.08.1991, И. А. Кобузева, опр. Д. Д. Соколов (MW);
10) восточная часть устья Янкой, мохово-осокоово-пушчовое болото, 06.08.2010, И. В. Блинова, Л. А. Москвина (KAND);
11) ЮВ от о. Ковда, мелиорированное болото с сосной, мочажина, 30.07.1954, Р. Н. Шляков (KPABG); окрестности о. Ковда, сфагновое болото, 25.08.1991, И. А. Кобузева, опр. Д. Д. Соколов (MW);
12) восточная часть устья Янкой, мохово-осокоово-пушчовое болото, 06.08.2010, И. В. Блинова, Л. А. Москвина (KAND);
К ИЗУЧЕНИЮ ВИДОВОГО СОСТАВА НАСЕКОМЫХ МУРМАНСКОЙ ОБЛАСТИ
Бянова И.В.
Учреждение Российской академии наук Полярно-алтайский ботанический сад-институт Полярно-алтайский ботанический сад-институт им. Н.А.Антонова. Кольского научного центра РАН, Кировск, Россия
E-mail: ilbi@yandex.ru


ИССЛЕДОВАНИЕ ТРАНСПИРАЦИИ У 4-ЛЕТНИХ САЖЕНЦЕВ КАРЕЛЬСКОЙ БЕРЕЗЫ И БЕРЕЗЫ ПОВИСЛОЙ
Болондянский В.К., Вилков В.А.
Учреждение Российской академии наук Институт леса Карельского научного центра РАН, Петрозаводск, Петрозаводская 11, 185910. Факс: (8114)768160, e-mail: bolond@krc.karelia.ru

Карельская береза (Betula pendula var. carelica) (БК) считается по мнению большинства исследователей разновидностью или независимой формой березы повислой (Betula pendula var. pendula) (БП). Наряду с внешними признаками (зубчатость древесины, форма ствола и кроны) у БК наблюдаются и физиологические различия. Для карельской березы характерно аномально строение проводящих тканей ствола - сверхтонкая структура аномально высокая числа сосудов, увеличение количества клеток запасающей паренхимы. Указанные структурные особенности должны сказаться на скорости водного потока по ксилеме и на транспирации, которая и явилась предметом нашего исследования.

Исследования транспирации проводили на опытных площадях вблизи г. Петрозаводска в июле-августе 2007 г. Одновременно велись исследования фотосинтеза с помощью аэрозольной системы на базе газоанализатора InfraFry-4, которая содержит блок инфракрасной последовательности темпертуры +5°C и колонок CaCl2 для его окончательного охлаждения. В охладителе, работающем на эффекте Пельтье, часть водяного пара конденсируется. Следовательно, кислород не должен быть переносим через прозрачную стеклянную трубку с делениями для измерения показателей. Через один канал поступал воздух, проходивший через камеру с листом, через второй - воздух сравнения. Разницу между величинами сконденсированных масс приблизительно равна транспирации помещенного в камеру растительного материала. В течение этого времени показания снимались 2 раза в час, в проходящий (6-14°C) – один раз в час. Кроме того, транспирацию для контроля фиксировали весовым методом.

У 4-летних саженцев БК и БП, растущих на открытом месте, различие средних величин транспирации для всего периода измерений было сравнительно мало — 3,45 и 3,71 ммоль м-2 с-1 соответственно. Хотя внешние условия в моменты измерений на породах были примерно одинаковыми, различия в транспирации в конкретные периоды измерений были

1 Авторы благодарят Дружкову Т.И. и Лихачеву А.Ю. за определение мхов, Киркорову Л.А. за определение лишайников.