

SUMMARY

Peculiarities of seed reproduction of 14 *Artemisia* species from the Saratov Region have been studied. Populations of five species (*A. vulgaris*, *A. salsaloides*, *A. dracunculus*, *A. glauca*, *A. austriaca*) demonstrate a high (not less than 20—30 %) frequency of gametophytic apomixis in plants, and three species (*A. abrotanum*, *A. absinthium*, *A. armenica*) are characterized by the lesser (10—15 %) frequency of gametophytic apomixis. The results of our study of seed productivity of *A. salsaloides* plants in the absence of pollen confirm that gametophytic apomixis is a mode of seed reproduction of the *Artemisia* species. A capacity for apomictic mode of reproduction in all the eight species under study has been discovered for the first time.

© И. В. Блинова

ОСОБЕННОСТИ СЕЗОННОГО РАЗВИТИЯ ОРХИДНЫХ ЗА ПОЛЯРНЫМ КРУГОМ

I. V. BliNova. PECULIARITIES OF SEASONAL DEVELOPMENT OF ORCHID SPECIES NORTH OF THE ARCTIC CIRCLE

Полярно-альпийский ботанический сад-институт
184256 Кировск, Мурманская обл.
E-mail: ilona@aprec.ru
Поступила 07.10.2008
Окончательный вариант получен 04.08.2010

Ключевые слова: Orchidaceae, сезонное развитие, северная граница ареала, Мурманская обл.

Важнейшей характеристикой приспособленности растений к окружающим экологическим условиям среды являются цикл и ритм их сезонного развития. Внепочечное развитие, часто подразумеваемое видимый рост растений и, час

Для большинства видов орхидных Европы известно время их цветения (Summerhayes, 1951; Delforge, 2002; Flora Iberica, 2005) и составлены подробные таблицы для ряда областей (Reinhard et al., 1991; Wells et al., 1998; Lemagnen, 2002). Период плодоношения практически у всех видов изучен недостаточно и в целом отражает ситуацию и с другими сосудистыми растениями (Rathcke, Lacey, 1985). Нет данных о его полной протяженности, а также отдельных этапов, включающих созревание и рассеивание семян. Возможно, это связано с двумя причинами: недостаточной стандартизацией методик, определяющих начало и конец каждого фенологического события (характерно для всех растений), а также крайней сложностью обнаружения особей в период до и после цветения (характерно для орхидных).

Несмотря на тропическое происхождение, некоторые виды орхидных достигли в своем распространении арктических широт. Климатический диапазон, в котором произрастают представители этого семейства, чрезвычайно широк. В настоящей работе рассмотрены данные по изучению фенологии орхидных, произрастающих за Полярным кругом.

Материал и методика

Характеристика района исследования

Мурманская область (66—70° с. ш.) находится в атлантико-арктической климатической зоне умеренного пояса (Яковлев, 1961). Большая часть ее территории расположена севернее Полярного круга. Влиянием теплого морского течения Гольфстрим обусловлен относительно мягкий климат по сравнению с районами Крайнего Севера, расположенными восточнее Кольского п-ова. Это определяет развитие в регионе преимущественно бореальных типов растительности: хвойных лесов и бореальных болот, сменяющихся при продвижении на север и с увеличением высоты местности березовыми криволесьями, кустарничковыми и лишайниками тундрами, а в наиболее высоких горах — горными полярными пустынями (Цинзерлинг, 1934; Regel, 1935; Чернов, 1953; Koroleva, 1994). Среднегодовая температура воздуха составляет 0 °C на побережье Баренцева и Белого морей и ~2 °C в центральной части. Среднемесячные температуры января достигают ~8—13 °C, июля +8—+13 °C. Среднегодовое количество осадков неодинаково в разных районах области. Годовая сумма осадков варьирует от 800 до 1200 мм в горных районах до 500—800 мм на большей части равнинной территории (Яковлев, 1961; Яковлев, Козлова, 1971).
Объекты исследования

Методы исследования

При изучении сезонного развития видов отмечали начало и конец фаз цветения и плодоношения. У особей выявляли черты, характеризующие определенную фазу развития, и определяли наличие или отсутствие порогового числа особей в популяции. Рекомендуем в литературе значение составляет 5—10% для индикации наступления или окончания события. Читаем, что численность генеративных побегов в изученных популяциях орхидных низкая (7—80 побегов) и формальное применение 5—10%-го барьера означало бы 0.4—0.7 особи в маленьких популяциях и 4—8 особей в больших, он был нам изменен до 2—5 особей.

Раскрытие первого окрашенного цветка было индикатором начала цве
tения, а наличие последнего раскрытого цветка обозначало конец цветения. У многоцветковых орхидных в соцветии возможно обнаружить и цветки, и плоды. При определении конца цветения у Coeloglossum viride необходимо обращать внимание на изменение цвета губы (желтый) и шпорца (чернее) и их последующее засыхание, так как листочки внешнего круга волчок цвета могут функциониро
vать почти до полного созревания семян. У видов рода Listera листочки внешнего и внутреннего круга волчок цвета могут функционировать до рассеивания семян. Диагностическим признаком начала плодоношения у них можно считать превышение длины завязи по сравнению с длиной листочков внешнего круга орхидей.

Вслед за цветением наступает плодоношение, этапами которого являются ини
tиация, рост, созревание и рассеивание плодов (семян) (Бейдеман, 1960, 1974; Серебряков, 1961; Rathcke, Lacey, 1985). Ряд исследователей ограничиваются выделе
нием в фазе плодоношения только ключевыми моментами — созревании плодов и рассеиванием семян (Лапин, 1949; Шульц, 1981; Захаренко, 1992).

Особенностью орхидных является то, что к моменту опыления семязачатки не сформированы, и только опыление фактически стимулирует их дальнейшее развитие (Swamy, 1949; Yeung, Law, 1997; Назаров, 1995; Batygina et al., 2003). Поскольку в фенологии сигнальными являются визуальные признаки, определение на
чала плодоношения обычно связывают с увлажнением лепестков. Поэтому мы также использовали увлажнение листочков внутреннего круга волчок цвета и шпорца за

1 Названия видов орхидных приведены по С. К. Черепанову (1995).

398
окончание фазы цветения и начало плодоношения. Дополнительно были проведены опыты по искусственному опылению в популяциях Cypripedium calceolus и Calypso bulbosa, показавшие ускоренное увядание оплодотворенных цветков по сравнению с неоплодотворенными и, таким образом, подтверждившие возможность использования этого признака. Но, как было отмечено выше, исключением являются виды рода Listera.

Отдельно в фазе плодоношения выделяли период зрелых семян, который у большинства видов можно определить по хорошо сформированным коробочкам. Их размер сравнивали с измерениями размеров коробочек предыдущих лет в тех же популяциях во время рассеивания семян. Начало периода созревания семян у большинства видов совпадает с началом окрашивания семян внутри коробочек, от белых до желтоватых. По мере созревания семян интенсивность их окраски возрастает. Конец плодоношения совпадает с рассеиванием семян, которые к этому времени приобретают характерные для каждого вида размер и цвет. Например, семена Corallorrhiza trifida кофейно-молочного цвета, а Cypripedium calceolus — темно-коричневого. Существуют и исключения. Так, семена некоторых видов — Listera ovata, Calypso bulbosa — остаются светлыми, поэтому цвет их семян не может служить индикатором степени созревания. На степень зрелости семян указывает и конец их «слипания» в одну массу при разлагании коробочек. Наличие «пылевидной субстанции» внутри нее — признак скорого рассеивания семян. У большинства видов дополнительной особенностью является изменение окраски коробочки. Она становится желтовато-коричневатой, или коричневой. Почти у всех исследованных видов стенки коробочки высыхают и становятся похожими на бумагу, что считается нормой для наземных орхидных (Dressler, 1996; Genera Orchidacearum, 1999). Исключением являются относительно мясистые плоды желтого цвета с красными полосками Epipogium aphyllum. Интересно, что редкая встречаляемость мясистых плодов в сем. Orchidaceae отмечена лишь у некоторых эпифитных орхидей и является примитивным признаком (Genera Orchidacearum, 1999). Подсыхание стенок коробочки приводит к образованию продольных щелей, через которые рассеиваются семена: чем толще стенки коробочки, тем более длительное время требуется для их высыхания и достижения периода рассеивания семян. Конец фазы плодоношения считается рассеивание семян.

Сроки и длительность каждой фазы определяли на основании средних многолетних данных наступления и окончания событий в популяциях в 1992—2008 гг. Число лет изучения конкретной популяции варьировало от 4 до 16 лет. Число популяций каждого вида составляло от 1 до 5. Более подробная характеристика популяций была дана ранее (Блинова, 2009).

У каждого вида при изучении продолжительности сезонного развития его побегов определяли следующие характеристики: 1) число дней от начала вегетативного периода (ВП) до начала цветения (min цв.), 2) число дней от начала ВП до конца цветения (max цв.), 3) число дней от начала ВП до начала периода созревания семян (min плдн.), 4) число дней от начала ВП до конца периода зрелых семян (max плдн.). Завершение сезона развития вида считали рассеивание семян. Для оценки законченности сезонного развития вида сравнивали 4-ю характеристику с продолжительностью ВП.

Для выявления фенологических закономерностей использовали общепринятую генерализацию в отношении продолжительности вегетационного периода. Так, границами вегетационного периода принят переход среднесуточной температуры воздуха через +5 °C весной и осенью. Для определения продолжительности вегетационного периода в Мурманской обл. использовали данные метеостанции
Результаты исследования

Продолжительность вегетационного периода (ВП)

Весной (в первую декаду июня) в центральной части Мурманской обл. температура воздуха превышает +5 °C (рис. 1), что можно рассматривать началом ВП. Осенью температура воздуха в две первые декады сентября также бывает выше +5 °C. Поэтому конец второй декады можно считать концом ВП. Продолжительность вегетационного периода составляет 11 × 10 дней = 110 дней.

Особенностью климата Мурманской обл. является большое число заморозков (в среднем до 10) в сентябре. Именно поэтому ранее мы проводили корректировку длины ВП до 100 дней, считая границей конца ВП конец 1-й декады сентября (Быннова et al., 2003).

Цикличность развития побегов и ритм их сезонного развития

Орхидные Мурманской обл. — многолетние растения и чаще всего поликарпик (Быннова, 1996). Структурной единицей их побеговых систем являются моно- и полициклические побеги, которые для большинства видов орхидных развиваются по моноциклическому типу и имеют летне-зеленую генерацию листв. Эта группа — наиболее многочисленна и включает в себя виды разных жизненных форм.

Только у некоторых видов изменяется цикличность развития побегов. Этот признак часто связан с изменением ритма их сезонного развития. Только Calypso bulbosa и Goodyera repens имеют зимне-зеленую генерацию листв. По-видимому, оба вида можно считать древними растениями таежной зоны (Хозяйков, 1965; Мазуренко, Хозяйков, 1989; Виноградова, Филин, 1993; Куликов, 1994). Возможно, что Calypso bulbosa является вторично-наземным видом. Такие признаки, как наличие клубней побегового происхождения, избирательная встречаемость на моховых субстратах и разлагающихся пнях и стволах деревьев, раннее цветение и внепочечное развитие побега следующего года перед наступлением неблагоприятного зимнего периода, свидетельствуют о происхождении от тропических эпифитов.

Наши исследования показали, что моноциклический побег Calypso bulbosa дихоциклический. Известно, что нарушение апикального доминирования побега может

2 Каждый месяц условно состоял из 3 × 10 дней = 30 дней.
стимулировать ветвление в нижней, средней и верхней частях побега и более характерно для двудольных, нежели для однодольных (Cline, 1997). У C. bulbosa происходит в верхней части побега. Осенью происходит торможение роста вегетативного побега, а при наступлении благоприятного времени года (весной) идет развитие генеративного побега из почки, расположенной близко к прежней верхушке.

Ранее (Блинова, Куликов, 2006) мы предполагали, что C. bulbosa относится к растениям, развивающимся по озимому типу, т. е. имеющим побеги, промежуточные между моноциклическими и дициклическими (Серебряков, 1959а). Осенью, в период плодоношения побега последнего года, наступает фаза развертывания низовых листьев, а затем — единственный зеленый лист побега следующего года. Превращение этого вегетативного побега в клубень происходит, по-видимому, в зимне-весенний период. В начале вегетации базальная часть прошлогоднего побега уже утолщена. В литературе существует мнение, что для C. bulbosa характерен период летнего покоя, и что в это время после цветения у особей нет надземных частей (Баталов, 2000; Tatarenko, Kondo, 2003). Наши наблюдения на постоянных площадках в Мурманской обл. показали, что те особи, которые вступают в фазу плодоношения, практически всегда имеют развитый зеленый лист. Этот лист постепенно отмирает только к концу периода плодоношения, когда происходит рассеяние семян. У других особей, цветки которых не опылялись, отмирание листовой пластинки происходит вскоре после увядания цветка.

В отличие от большинства видов орхидных Мурманской обл., побеги которых развиваются 2—3 года внутри почки, Goodyera repens не имеет длительного внутрипочечного развития. Характерной особенностью этого вида является образование наземно-ползучего корневища с многочисленными надземными моноикарпическими полициклическими побегами. Похожие жизненные формы встречаются довольно часто у тропических представителей семейства в разных тропах. Наши исследования показали, что цикл развития моноикарпического побега у этого вида
в среднем составляет 4—6 лет: трех—четырехлетнего вегетирования, последующего цветения на пятый год и иногда остаточного вегетирования в вегетационном периоде шестого года. Строгой детерминированности в продолжительности вегетирования и переходе к цветению у этого вида нет. По-видимому, большое значение имеют отношения внутри клона и климатические условия. Максимальное число фотосинтезирующих листьев на побеге может достигать 10. Как и у других видов орхидных, соцветие полностью сформировано в конце вегетационного периода. Его зачаток располагается на верхушке облиственного побега под зачатками нескольких листьев. Таким образом, позднее цветение в вегетационный период следующего года связано с особой ритмичностью этого вида. Сходная фенология отмечена у Goodyera schlechtendaliana (Татаренко, Кондо, 2003; Tatarenko, Kondo, 2003). Также и у этого вида зачаток соцветия в апикальной почке можно обнаружить за год до цветения. В Мурманской обл. изучение ритма развития G. repens показало, что, возможно, его вынужденный зимний покой не соответствует органическому. Эта особенность может быть связана с эконо-историческим прошлым вида (Серебряков, 19596).

Фенология разных видов орхидных

Большинство видов орхидных (Cypripedium calceolus, Gymnadenia conopsea, Platanthera bifolia, Dactylorhiza incarnata D. maculata, Leucorchis albida, Epipactis atrorubens, Malaxis monophyllos) цветут в начале июля—середине вегетационного периода (рис. 2).

Рис. 2. Продолжительность периодов цветения и плодоношения.

min цв. — от начала вегетативного периода (ВП) до начала цветения, max цв. — от начала ВП до конца цветения, min пл.д. — от начала ВП до начала периода созревания семян, max пл.д. — от начала ВП до конца периода зрелых семян. По часовой стрелке начиная с Calypso bulbosa расположены виды по мере их зацветания во время ВП.

Цифры на окружностях лепестковой диаграммы обозначают число дней.
Самая раннецветущая орхидея — Calypso bulbosa — цветет сразу после схода снежного покрова, в начале распускания листвьев на деревьях. В Мурманской обл. это происходит в начале июня. Другие раннецветущие орхидеи — Listera cordata и Corallorrhiza trifida — цветут в конце июня.

Наиболее поздноцветущие орхидеи — Goodyera repens и Epipogium aphyllum. В 1995—2001 гг. цветение E. aphyllum происходило в конце августа—начале сентября, т. е. в самом конце вегетационного периода, когда части заморозки и редки насекомые-опылители. Все генеративные побеги отмирали в эти годы через несколько дней после их появления вследствие напочвенных заморозков. Начиная с 2002 г. в связи с тенденцией повышения температур в вегетационный период (Блинова, 2008) время цветения существенно (до 2 недель) сместилось к началу августа. Региональное изменение климата привело к значительному уменьшению числа заморозков в конце вегетационного периода и благоприятствовало появлению плодов в популяции.

Наиболее короткая фаза цветения у Cypripedium calceolus и Goodyera repens составляет 15 дней; наиболее длительная — у Gymnadenia conopsea (41 день) и Hammarbya paludosa (56 дней) (см. таблицу). В популяциях Hammarbya paludosa не обнаружено завязывания плодов, по-видимому, из-за отсутствия специфических опылителей, и продолжительное, около 2 мес, цветение продолжается до заморозков. Также во Франции, в провинции Ла Манш, продолжительность цветения составляет около 2.5 мес, с начала июля до середины сентября (Lemagnen, 1997—2002). Интересно, что близкородственный вид — Malaxis monophyllos — не обладает столь долгой продолжительностью жизни цветков. Неопыленные цветки отмирают к моменту развития коробочек на побегах с опыленными цветками. Изучение образцов H. paludosa из европейской части России (LE) показало, что наиболее раннее цветение у этого вида наблюдалось в конце июня, а наиболее раннее плодоношение — в конце июля, т. е., как и у большинства других орхидных, период плодоношения составлял около месяца. По средним датам цветение образцов происходило в июле и созревание плодов — в августе.

В конце июня начинается фаза плодоношения у тех видов, которые зацвели первыми — Calypso bulbosa, Listera cordata, Corallorrhiza trifida (см. таблицу). Однако только у L. cordata рассеивание семян происходит в конце июля. Этот вид имеет один из самых коротких фаз плодоношения (42 дня) и период зрелых семян (12 дней). Также быстро развиваются семенные коробочки у близкородственного вида, который цветет в июле, L. ovata. Возможно, в отличие от даты цветения (или другой даты наступления фенологического события) длительность плодоношения (возможно длительность других фенофаз) является видовым признаком. Наиболее поздние даты наступления фаз плодоношения у Goodyera repens и Epipogium aphyllum.

Наиболее длительная фаза плодоношения у Cypripedium calceolus (81 день) и у Calypso bulbosa (77 дней). Поскольку цветение C. bulbosa происходит очень рано, при таком длительном плодоношении и созревании семян рассеивание семян происходит уже в конце вегетационного периода, в конце августа. Напротив, Cypripedium calceolus едва успевает заключить свой сезонный цикл, так как его период зрелых семян протекает в конце сентября—начале октября, когда уже начинает формироваться снежный покров (Blinova, 2002).

Семена рассеиваются ветром. Процесс отличается у разных видов по характеру и протяженности. У видов рода Listera и Epipactis atrorubens почти шаровидные коробочки раскрываются широкими щелями. Семена из них могут высаживаться в те-
Сроки цветения и плодоношения (из средних многолетних в 1992—2008 гг.) видов орхидных в Мурманской области

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Вид</th>
<th>Фаза цветения</th>
<th>Фаза плодоношения</th>
<th>инициация и период незрелых семян</th>
<th>период зрелых семян</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>сроки</td>
<td>средняя дата</td>
<td>длительность</td>
<td>сроки</td>
</tr>
<tr>
<td>1</td>
<td>Calypso bulbosa</td>
<td>05.06—25.06</td>
<td>15.06</td>
<td>21</td>
<td>20.06—10.08</td>
</tr>
<tr>
<td>2</td>
<td>Hammarbya paludosa</td>
<td>01.07—25.08</td>
<td>29.07</td>
<td>56</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Malaxis monophyllus</td>
<td>10.07—01.08</td>
<td>21.07</td>
<td>22</td>
<td>25.07—01.09</td>
</tr>
<tr>
<td>4</td>
<td>Coeloglossum viride</td>
<td>20.06—15.07</td>
<td>02.07</td>
<td>25</td>
<td>10.07—10.08</td>
</tr>
<tr>
<td>5</td>
<td>Dactylorhiza incarnata</td>
<td>25.06—20.07</td>
<td>08.07</td>
<td>25</td>
<td>15.07—20.08</td>
</tr>
<tr>
<td>6</td>
<td>D. maculata</td>
<td>25.06—25.07</td>
<td>10.07</td>
<td>31</td>
<td>20.07—25.08</td>
</tr>
<tr>
<td>7</td>
<td>Gymnadenia conopsea</td>
<td>01.07—10.08</td>
<td>21.07</td>
<td>41</td>
<td>20.07—25.08</td>
</tr>
<tr>
<td>8</td>
<td>Platanthera bifolia</td>
<td>01.07—01.08</td>
<td>16.07</td>
<td>32</td>
<td>20.07—05.09</td>
</tr>
<tr>
<td>9</td>
<td>Leucorchis albida</td>
<td>05.07—25.07</td>
<td>15.07</td>
<td>20</td>
<td>20.07—20.08</td>
</tr>
<tr>
<td>10</td>
<td>Cypripedium calceolus</td>
<td>01.07—15.07</td>
<td>07.07</td>
<td>15</td>
<td>10.07—20.09</td>
</tr>
<tr>
<td>11</td>
<td>Epipactis atrorubens</td>
<td>10.07—01.08</td>
<td>21.07</td>
<td>22</td>
<td>20.07—25.08</td>
</tr>
<tr>
<td>12</td>
<td>Goodyera repens</td>
<td>25.07—15.08</td>
<td>04.08</td>
<td>21</td>
<td>01.08—05.09</td>
</tr>
<tr>
<td>13</td>
<td>Listera cordata</td>
<td>15.06—10.07</td>
<td>27.06</td>
<td>25</td>
<td>20.06—20.07</td>
</tr>
<tr>
<td>14</td>
<td>L. ovata</td>
<td>10.07—01.08</td>
<td>21.07</td>
<td>22</td>
<td>20.07—01.08</td>
</tr>
<tr>
<td>15</td>
<td>Corallorrhiza trifida</td>
<td>17.06—05.07</td>
<td>25.06</td>
<td>18</td>
<td>25.06—01.08</td>
</tr>
<tr>
<td>16</td>
<td>Epipogium aphyllum</td>
<td>10.08—31.08</td>
<td>21.08</td>
<td>22</td>
<td>15.08—01.09</td>
</tr>
</tbody>
</table>
Соотношение продолжительности сезонного развития орхидных к длине вегетационного периода

Три вида превосходят по продолжительности своего сезонного развития границы ВП (110 дней) (рис. 2). Это происходит из-за следующих причин: позднего цветения (Epipogium aphyllum, Goodyera repens) и продолжительного периода созревания семян (Cypripedium calceolus). Четыре вида (Malaxis monophylla, Epipactis atrorubens, Gymnadenia conopsea, Platanthera bifolia) заканчивают свой сезонный цикл на исходе ВП из-за совокупности факторов, например нераннего цветения и относительно продолжительного плодоношения. Hammarbya paludosa не заканчивает свой сезонный цикл из-за отсутствия опылителей. Несмотря на полицикличность своего развития, в репродуктивный год Goodyera repens также выходит за границы вегетационного периода из-за позднего наступления цветения.

Лишь трои вида (Corallorrhiza trifida, Listera cordata, L. ovata) способны пройти сезонный цикл менее чем за 80 % продолжительности вегетационного периода. Самое оптимальное сочетание коротких фаз цветения и плодоношения имеют виды рода Listera.

Продолжительность фазы плодоношения во многом влияет на длительность полного сезонного развития. Только у трех видов (Epipogium aphyllum, Listera cordata, L. ovata) она длится меньше 42 дней.

Обсуждение результатов

Несмотря на огромное число работ по фенологии, рассмотрению границ и продлжительности вегетационного периода в разных климатических регионах уделяется недостаточно внимания. Условная продолжительность 110 дней ВП за Полярным кругом показывает крайние значения для видов, приспособленных к разным температурным режимам. В действительности у холодовыносливых и теплолюбивых растений существует различия в способности роста при определенной температуре (Шульц, 1981). На наш взгляд, из 4 групп растений, выделенных по их реакциям на температурный режим, наземные североевропейские орхидные являются переходными от микротермов, с нижним термическим порогом около +5 °C к мезотермам, с нижним порогом около +10 °C. Мезотермический режим длится в Мурманской обл. с 3-й декады июня по 2-ю декаду августа, т. е. 6 × 10 = 60 дней. За Полярным кругом первые две декады сентября, характеризующиеся регулярными заморозками, следует включать в ВП условно, например, для кустарников. Однако в аномально теплые и продолжительные ВП существует возможность позднего завершения сезонного цикла развития даже у орхидных. В последнее десятилетие

3 Учитывая такое реактивное рассеивание семян у этих видов, при сборе материала, например, для подсчета семенной продуктивности, необходим ежедневный мониторинг популяций ближе к дате окончания плодоношения. Примечательно сразу в пелевых условиях помещать каждую коробочку в отдельный пакетик.
таких ВП зарегистрировано намного больше, чем в предыдущие 30 лет. Потепле-
ние регионального климата привело к увеличению численности популяций многих видов орхидных (Блинова, 2008).

У Goodyera repens, единственного вида, имеющего полициклические побеги, на севере незначительно удлиняется их цикл. Так, если в Мурманской обл. развитие моноциклических побегов Goodyera repens продолжается в течение 4—6 лет, то в Шотландии полная смена существующих наземных побегов в клонах G. repens происходит в среднем в течение 4 лет (Alexander, Alexander, 1984). По данным I. Tatarenko и К. Kondo (2003), в Архангельской обл. отмирание побегов этого вида происходит вскоре после плодоношения, хотя другие виды рода Goodyera — G. schlechtendantiana, G. foliosa — в Японии имеют сходный с выявленным нами в Заполярье ритм развития побегов: после цветения в августе и плодоношения в сентябре надземные части отмирают весной следующего года.

Сравнение сезонного развития Platanthera bifolia и Coeloglossum viride в контрастных климатических районах показало, что различие в температурных режимах смещает начало годичного цикла видов и влияет на продолжительность их фенологических фаз (Блинова et al., 2003). Несмотря на различия в сезонной динамике видов, период цветения остается малоизменчивым на разных широтах. В различных климатических условиях видоспецифичные стратегии роста и плодоношения имеют разную суммую температуру.

Внутренние факторы также активно контролируют наступление фенологических событий, например плодоношения (Rathcke, Lacey, 1985). Особенноностью орхидных является то, что к моменту опыления семязачатки находятся на ранних ста-

Некоторые авторы полагают, что продолжительность фазы плодоношения определена на видовом уровне. Так, созревание семян у Spirantes sinensis проходит в течение месяца, а у Galeola septentrionalis — 4—5 мес. (Tatarenko, Kondo, 2003). В нашей работе также выявлено, что виды рода Listera имеют сходную, короткую (32—42 дня), фазу плодоношения. Однако проведенное сравнение фенологии одних и тех же видов на разных широтах показало, что климат не менее значительно влияет на продолжительность фенологических фаз (Blinova et al., 2003). Вероятно, оба фактора — видоспецифичность и климат — могут влиять на продолжительность созревания семян у орхидных.

Успеш прохождения всех фенологических faz в конкретном климатическом регионе изменяется от центра ареала вида к его границам. Сезонный цикл развития периферийных популяций часто незакончен: растения лишь вегетируют или цветут, но не плодоносят, либо плоды не вызревают. Встречаемость в регионе видов с отклоняющейся фенологией связана с их историческим расселением и изменением климата данного региона. Так, Е. В. Вульф (1932) сообщает, что третичный реликт Cyclamen coum, указанный для крымско-кавказской флоры Ф. А. Биберштейном в 1808 г., удалось повторно обнаружить лишь в 1925 г. во время его цветения в декабре! Важным свойством растений является их феноритм, заложенный генетически. Его очень трудно изменить при интродукции, даже если растение происходит из близких климатических регионов (Головкин, 1974). Особенно существенным является наступление периода цветения. При расселении растения должны не только адаптироваться к продолжительному неблагоприятному для их развития периоду, но и их время цветения должно совпадать со сроками вегетационного периода в новых условиях.

Показательными являются современные данные, полученные о фенологии ряда микротрофных орхидных в Индии (Pradhan, 2004). Так из пяти видов рода Epipogium, произрастающих в горных районах, цветение четырех происходит в феврале—апреле. Только Epipogium aphyllum, произрастающий в хвойных и дубовых лесах, а также бамбуковых зарослях на высоте 2000—3500 м, цветет в июле—сентябре, что полностью совпадает с известным временем его цветения в Европейской...
части, в том числе предельным (сентябрь) в Мурманской обл. Corallorrhiza trifida, встречающаяся в Кашмирском ущелье в очень суровых условиях на высоте 3800—4000 м, цветет в мае—июле (Pradhan, 2004). Такое удачное совпадение феноцита со способностью произрастания в крайних условиях, вероятно, позволило виду оставаться в и заполярных районах с третичного периода! (Blinova, 2008).

Сравнение фенологии одного и того же вида орхидных на разных широтах могло бы стать интересным продолжением данной работы.

Заключение

Анализ фенологии и феноритмов 16 видов орхидных на северном пределе их распространения в Мурманской обл. показал, что сезонное развитие 8 видов (Cypripedium calceolus, Epipogium aphyllum, Epipactis atrorubens, Goodyera repens, Gymnadenia conopsea, Hammarbya paludosa, Malaxis monophyllos, Platanthera bifolia) часто является незавершенным из-за следующих причин: цветения на исходе вегетационного периода, продолжительного периода созревания семян, отсутствия опылителей, или совокупности факторов, например, неравномерного цветения и относительно продолжительного плодоношения.

Для видов с ди- и полициклическими побегами решающим для их адаптации является продолжительность сезонного развития в вегетационный период последнего года.

Превышение сроков полного сезонного развития орхидных над продолжительностью вегетационного периода, а также отклонение их феноритмов от сроков прохождения вегетационного периода за Полярным кругом, вероятно, свидетельствует об их древнем проникновении в эти районы, в эпохи с другим, более теплым, климатом, предположительно в третичное время.

Продолжительность фенологических фаз орхидных может быть видоспецифична и обусловлена климатическими и внутренними факторами.

Благодарности

Выражают глубокую признательность за обсуждение данной работы Л. В. Петуховой (Тверской ГУ), Н. Е. Королевой (ПАБСИ) и А. А. Похилько (Кольский филиал ПетрГУ). Особая благодарность Т. Н. Виноградовой (Москва, лицей № 1567) за обсуждение морфологии Calypso bulbosa.

СПИСОК ЛITERATУРЫ

Баталов А. Биоморфология, экология популяций и вопросы охраны орхидей Архангельской области: Автореф. дис. ... канд. биол. наук. М., 1998. 15 с.

Бейдеман Н. И. Методика изучения фенологии растений и растительных сообществ. Новосибирск, 1974. 154 с.

Блинова И. В. Особенности морфологического строения и побегообразования ряда орхидных на северном пределе их распространения // Бiol. МОИП. 1996. Т. 101. Вып. 5. С. 69—80.
Шамров И. И., Морфогенез семязачатка и семени у Listera ovata (Orchidaceae) // Бот. журн. 1991. Т. 76. № 2. С. 240—245.

Цицеровник Ю. Д. География растительного покрова северо-запада европейской части СССР. Л., 1934. 378 с.

Чернов Е. Г. Растительность Мурманской области: Дис. ... канд. биол. наук. Рукопись. Кировск, 1953. 274 с. (Фонды ПАБИ КЦ РАН).

Шенников А. П. Луговедение. Л., 1941. 292 с.

Шибанова Н. Л. Репродуктивная биология некоторых редких видов орхидей Предуралья: Автореф. дис. ... канд. биол. наук. Пермь, 1996. 19 с.

Шульц Г. Э. Общая фенологии. Л., 188 с.

Vol. 3. P. 1022—1025.

The seasonal development of 16 orchid species is studied north of the Arctic Circle (Murman Region) in 1992—2008. 14 species of 16 have monopodial summer-green shoots. Two species — Calypso bulbosa and Goodyera repens, have winter-green shoots and bi- and polycyclic shoots respectively. The majority of orchid species flowers in the middle of July, on the peak of the growing period. Phenologies of the 16 orchid species are discussed in regard to the duration of the growing period. It is revealed that the complete seasonal development with seed dispersal of seven species (Cypripedium calceolus, Epipogium aphyllum, Epipactis atrorubens, Goodyera repens, Gymnadenia conopsea, Malaxis morophyllos, Platanthera bifolia) match or exceed the duration of short growing period in the north. An extended seasonal development is typical for Hammarbya paludosa, however, the fruiting was not observed in its populations during 8-years monitoring since 2001.